博客
关于我
chapter.数据清洗1.2
阅读量:517 次
发布时间:2019-03-07

本文共 2318 字,大约阅读时间需要 7 分钟。

1.3填充缺失值

当数据量不够或者其他部分信息很重要的时候,就不能删除数据了,这时需要对缺失值进行填充,通过fillna方法可以将缺失值替换为常数值。
例:

import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame(np.arange(12).reshape(3,4))display(data)#对数据进行处理,即创建一些为缺失值的数据data.loc[1,:]=np.nandata[2]=np.nandisplay(data)

在这里插入图片描述

使用fillna方法填充

import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame(np.arange(12).reshape(3,4))display(data)#对数据进行处理,即创建一些为缺失值的数据data.loc[1,:]=np.nandata[2]=np.nandisplay(data)data.fillna(0)#全部填充为0

在这里插入图片描述

当然在fillna中传入字典结构数据,可以针对不同列填充不同的值,fillna返回的是新对象,不会对原数据进行修改,可通过inplace就地进行修改。
例:

import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame(np.arange(12).reshape(3,4))display(data)#对数据进行处理,即创建一些为缺失值的数据data.loc[1,:]=np.nandata[2]=np.nandisplay(data)data.fillna({   1:6,3:0})

在这里插入图片描述

还可以通过平均值来作为填充数

import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame(np.arange(12).reshape(3,4))display(data)#对数据进行处理,即创建一些为缺失值的数据data.loc[1,:]=np.nandata[2]=np.nandisplay(data)data.fillna(method='ffill')

在这里插入图片描述

2.移除重复数据
在爬取的数据中往往会出现重复数据,对于重复数据保留一份即可,其余可以移除,在DataFrame数据中,通过duplicated方法判断各行是否有重复数据。

data=DataFrame({       '姓名':['小敏','晓明','小强','小红','晓明'],    '年龄':['女','男','男','女','男'],    '地址':['北京','南京','上海','广州','南京']})
import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame({       '姓名':['小敏','晓明','小强','小红','晓明'],    '年龄':['女','男','男','女','男'],    '地址':['北京','南京','上海','广州','南京']})display(data)data.duplicated()

在这里插入图片描述

通过drop_duplicates方法,可以删除多余的重复项

import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame({       '姓名':['小敏','晓明','小强','小红','晓明'],    '年龄':['女','男','男','女','男'],    '地址':['北京','南京','上海','广州','南京']})display(data)data.drop_duplicates()

在这里插入图片描述

很显然这种情况下当每行的每个字段都相同时才会判断出为重复,这时可以通过指定部分作为判断重复项的依据。

import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame({       '姓名':['小敏','晓明','小强','小红','晓明'],    '年龄':['女','男','男','女','男'],    '地址':['北京','南京','上海','广州','南京']})display(data)data.drop_duplicates('年龄')

在这里插入图片描述

从结果可以看出,保留的数据为第一次出现的组合。传入keep=‘last’可以保留最后一个。

转载地址:http://hrynz.baihongyu.com/

你可能感兴趣的文章
Mysql InnoDB存储引擎 —— 数据页
查看>>
Mysql InnoDB存储引擎中的checkpoint技术
查看>>
Mysql InnoDB存储引擎中缓冲池Buffer Pool、Redo Log、Bin Log、Undo Log、Channge Buffer
查看>>
MySQL InnoDB引擎的锁机制详解
查看>>
Mysql INNODB引擎行锁的3种算法 Record Lock Next-Key Lock Grap Lock
查看>>
mysql InnoDB数据存储引擎 的B+树索引原理
查看>>
mysql innodb通过使用mvcc来实现可重复读
查看>>
mysql insert update 同时执行_MySQL进阶三板斧(三)看清“触发器 (Trigger)”的真实面目...
查看>>
mysql interval显示条件值_MySQL INTERVAL关键字可以使用哪些不同的单位值?
查看>>
Mysql join原理
查看>>
MySQL Join算法与调优白皮书(二)
查看>>
Mysql order by与limit混用陷阱
查看>>
Mysql order by与limit混用陷阱
查看>>
mysql order by多个字段排序
查看>>
MySQL Order By实现原理分析和Filesort优化
查看>>
mysql problems
查看>>
mysql replace first,MySQL中处理各种重复的一些方法
查看>>
MySQL replace函数替换字符串语句的用法(mysql字符串替换)
查看>>
mysql replace用法
查看>>
Mysql Row_Format 参数讲解
查看>>